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Trimethylation of lysine 9 in histone H3 (H3K9me3) enrichment
is a characteristic of pericentric heterochromatin. The hypothesis
of a stepwise mechanism to establish and maintain this
mark during DNA replication suggests that newly synthesized
histone H3 goes through an intermediate methylation state to
become a substrate for the histone methyltransferase Suppressor
of variegation 39 (Suv39H1/H2). How this intermediate methyla-
tion state is achieved and how it is targeted to the correct place
at the right time is not yet known. Here, we show that the
histone H3K9 methyltransferase SetDB1 associates with the
specific heterochromatin protein 1a (HP1a)–chromatin assembly
factor 1 (CAF1) chaperone complex. This complex monomethyl-
ates K9 on non-nucleosomal histone H3. Therefore, the hetero-
chromatic HP1a–CAF1–SetDB1 complex probably provides
H3K9me1 for subsequent trimethylation by Suv39H1/H2 in
pericentric regions. The connection of CAF1 with DNA replica-
tion, HP1a with heterochromatin formation and SetDB1 for
H3K9me1 suggests a highly coordinated mechanism to ensure

the propagation of H3K9me3 in pericentric heterochromatin
during DNA replication.
Keywords: CAF1; H3K9 methylation; HP1a; pericentric
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INTRODUCTION
Histone proteins are heavily modified post-translationally, and
patterns of these modifications mark specific functional
nuclear domains. For example, trimethylation of lysine 9 in
histone H3 (H3K9me3) is highly enriched in pericentric
heterochromatin, the constitutive heterochromatin domain that
flanks centromeres. In addition to H3K9me3, this domain is
enriched in H4K20me3, hypoacetylated histones, DNA methyl-
ation, heterochromatin protein 1a (HP1a) and HP1b, and an
RNA component (Maison & Almouzni, 2004; Grewal & Jia, 2007).
A current model for the propagation of H3K9 methylation
and HP1 binding in this region through cell division proposes a
self-sustaining loop in which HP1 binds to H3K9me3 through its
chromodomain, which, in turn, recruits more of the H3K9–histone
methyltransferase (HMTase) Suv39H1/H2. However, in this
scheme, some level of H3K9me3 is necessary to nucleate
heterochromatin formation. In addition, it is unclear whether
Suv39H1/H2 is responsible for only H3K9me3 or whether it
affects other intermediate K9 methylation states.

Interestingly, in Suv39H1/H2 double null cells, accumulation
of both H3K9me3 and HP1a in pericentric heterochromatin is lost
with a concomitant enrichment of H3K9me1 (Peters et al, 2001;
Loyola et al, 2006). These results indicate that Suv39H1/H2 is not
involved in the monomethylation of H3K9 in these regions and
instead suggest that H3K9me1 might be used as a substrate for
trimethylation. In support of this view, transfection of the
Suv39H1/H2 double null cells with recombinant wild-type
Suv39H1/H2 is sufficient to restore the transition from H3K9me1
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Ñuñoa, Santiago, Chile
2UMR218, CNRS/UPMC, Institut Curie, 26 Rue d’Ulm 75248, Paris Cedex 05, France
3Department of Biochemistry and Molecular Biology, Unit 1000, The University
of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston,
Texas 77030, USA
4Department of Cancer Biology, Dana-Faber Cancer Institute and Harvard Medical
School, SM 836, 44 Binney Street, Boston, Massachusetts 02115, USA
5Department of Experimental Oncology, European Institute of Oncology,
Via Ademello 16, Milano 20139, Italy
6Histone Modifications Group and Munich Center of Integrated Protein Science,
Schillerstrasse 44, 80336 Munich, Germany
wPresent address: Graduate School of Natural Sciences, Nagoya City University,
Nagoya, Aichi 467-8501, Japan

&2009 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 10 | NO 7 | 2009

scientificreportscientific report

769

http://dx.doi.org/10.1038/embor.2009.90
mailto:genevieve.almouzni@curie.fr
http://www.emboreports.org


towards H3K9me3 (Loyola et al, 2006). Moreover, in vitro
methylation assays show that H3K9me1 is an optimal substrate
for Suv39H1/H2-mediated trimethylation of H3K9 (Loyola et al,
2006). Therefore, the question that arises is how H3K9me1 is
directed to pericentric heterochromatin.

The above self-sustaining model for the inheritance of
heterochromatin marks would work at any time during the
cell cycle, assuming that some level of H3K9me3 is available
for the nucleation of HP1 recruitment. However, a particular
situation arises during DNA replication in which nucleosome
disruption occurs ahead of the replication fork and newly
synthesized plus recycled histones are deposited behind the
fork onto newly synthesized DNA (Groth et al, 2007a). Parental
H3K9me3 might provide nucleation events to maintain HP1 and
Suv39H1/H2 in the pericentric domain; however, a replication-
coupled mechanism of H3K9 methylation might be needed to
promote the deposition of this histone mark onto newly
synthesized histones at the time of incorporation into chromatin.

One attractive model is that the chromatin assembly factor
CAF1—which functions in a manner coupled with DNA synthesis
and is present at all replication foci—might promote the loading of
H3.1K9me1 and HP1a in heterochromatin, thereby facilitating the
subsequent trimethylation of H3.1K9me1 by Suv39H1/H2 and
HP1a binding. Indeed, CAF1 might act as a platform to integrate
and coordinate a series of activities necessary for the inheritance
of both H3K9 and DNA methylation. CAF1 interacts with the
methyl-CpG-binding domain protein MBD1 and the H3K9–
HMTase SetDB1 during S phase (Sarraf & Stancheva, 2004).
However, how SetDB1 functions in conjunction with Suv39H1/
H2 to promote H3K9me3 at pericentric heterochromatin during
DNA replication is not known. Furthermore, no studies have yet
addressed how these two lysine methyltransferases (KMTs)
contribute to H3K9 mono-, di- and trimethylated states to
ultimately establish the characteristic H3K9me3 pattern found in
pericentric heterochromatin.

Here, we report that the HP1a–CAF1 complex associates with
SetDB1, and that this complex monomethylates non-nucleosomal
H3K9. Furthermore, we show that SetDB1 localizes to pericentric
heterochromatin, correlating with the replication of these sites. On
the basis of these results, we propose a model for how the CAF1
chromatin assembly pathway coupled with DNA replication
affects the establishment of H3K9 methylation patterns.

RESULTS AND DISCUSSION
The HP1a–CAF1 complex is associated with SetDB1
Previously, using an HeLa cell line expressing Flag and
haemagglutinin (HA) epitope-tagged HP1a, we found that HP1a
associates with HP1g and the three subunits of CAF1, namely
p150, p60 and RbAp48 (Quivy et al, 2004; Fig 1A). This HP1
complex, which contains CAF1, is distinct from the H3.1 complex
(Tagami et al, 2004; Fig 1A,B; supplementary Fig S1A online).
It is noted that the H3K9 methyltransferase SetDB1 is present in
this HP1 complex (as shown by immunoblotting, Fig 1B) and is
also found when retrieving CAF1-associated proteins (supplemen-
tary Fig S1B online). These data support the hypothesis that the
three proteins could be associated in a common complex.
Interestingly, additional mass spectrometric and immunoblot analy-
ses identified the transcriptional repressor KRAB-ZFP-associated
protein 1 (KAP1) as another component of the HP1a–CAF1

complex, but not of the H3.1–CAF1 complex (Fig 1A,B). Given
that KAP1 is known to interact directly with HP1 (Nielsen et al,
1999; Ryan et al, 1999) and SetDB1 (Schultz et al, 2002), its
presence in the HP1–CAF1 complex might act to promote the
association of SetDB1 with this complex.

The presence of SetDB1 in the HP1a–CAF1 complex prompted
us to assess whether the complex has histone H3 methyl-
transferase activity. Indeed, we found associated with the
HP1a–CAF1 complex an H3-specific HMTase activity (Fig 1C)
that co-fractionates with the HP1a–CAF1 complex on a glycerol
gradient (supplementary Fig S2A,B online). The H3.1–CAF1
complex did not show any HMTase activity when tested under
similar conditions (supplementary Fig S2C online). Interestingly,
this HMTase activity preferentially methylated free-core histones
rather than nucleosomes (Fig 1C), suggesting that the HMTase
activity modifies histones that have not yet been incorporated into
chromatin. Cellular fractionation analysis showed that SetDB1
localized mainly in the cytosolic and nuclear extracts rather than
in the chromatin fraction (Fig 1D). This distribution is in contrast
with that of other H3K9 methyltransferases, including Eu-HMTase,
G9a and Suv39H1, which are localized mainly in the nuclear
and chromatin fractions (Loyola et al, 2006). The localization
of SetDB1 further suggests that it modifies non-nucleosomal
histones, which is consistent with the observation that free
histones are better substrates for the HP1a–CAF1 complex than
nucleosomes (Fig 1C).

The HP1a–CAF1 complex contains the HMTase SetDB1
Next, we investigated further the specificity of the HMTase activity
associated with the HP1a–CAF1 complex. Mass spectrometric
analysis of the products of the methylation reaction obtained with
recombinant histone H3 and the HP1a–CAF1 complex detected
the formation of H3K9me1 (Fig 2A, middle panel left). Interest-
ingly, we were unable to detect the formation of either H3K9me2
or H3K9me3 by the HP1a–CAF1 complex, although these
products were detected in a control reaction using recombinant
Suv39H1 (Fig 2A, bottom panel left). In addition, no other
methylated lysines were found, as shown by the analysis of the
(27–40) H3 peptide (Fig 2A, right panel). To confirm these results,
we performed HMTase filter peptide assays with the HP1a–CAF1
complex and a peptide containing amino acids (1–19) of H3
(Fig 2B). We observed methylation of H3 by the HP1a complex,
but not by the mock Flag immunoprecipitate. To show that the
activity was specific for H3K9, we repeated the assay using a
peptide containing trimethylated K9 (Fig 2B). As expected, the
complex was not active towards the H3K9me3 peptide (Fig 2B).
Taken together, these results indicate that the HP1a–CAF1
complex contains H3K9me1-specific activity.

To determine whether SetDB1 is responsible for the HMTase
activity in the HP1 complex, we sought to knock down SetDB1.
However, SetDB1 knockout mice are embryonic lethal (Dodge
et al, 2004), and attempts to impair SetDB1 function in vivo in
stable cell lines have proven difficult owing to high levels of cell
death (Wang et al, 2003; Sarraf & Stancheva, 2004). Therefore, we
selected partial RNA interference (small interfering RNA (siRNA))
conditions to reduce SetDB1 protein while allowing the growth of
enough cells for our analysis (Fig 2C). These conditions were met
with a reduction in SetDB1 to about 40% in the HP1a–CAF1
complex when compared with the complex isolated from control
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siRNA-treated cells (immunoblot, Fig 2C, left panel). Knockdown
of SetDB1 did not affect the stability of the complex, as other
subunits remained associated with HP1 (Fig 2C, left panel).
HMTase activity towards the H3 (1–19) peptide was diminished
when SetDB1 was depleted (Fig 2C, right panel). These data show
that the H3K9me1 HMTase activity in the complex is largely

accounted for by SetDB1, arguing for its crucial role in this
function. To confirm that our observations were not due to
off-target effects, we used a different SetDB1 siRNA (supplementary
Fig S3 online). Interestingly, we observed a reduction in the levels
of both nucleosomal and non-nucleosomal H3K9me1 after a
similar SetDB1 knockdown (supplementary Fig S4A,B online). The
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Fig 1 | The HP1a–CAF1 complex associates with the histone H3 methyltransferase SetDB1. (A) Coomassie blue-stained gel of the HP1a–CAF1 and H3.1

complexes isolated by Flag immunoprecipitation (IP). The subunits of each complex, as identified by mass spectrometry (MS), are shown. Below is the

mass spectrometric data for the HP1a complex. (B) Western blots of the HP1a–CAF1 and H3.1 complexes showing selected components as indicated.

Mock IP refers to the IP using nuclear extract derived from the same cells, but that are not expressing a Flag-tagged protein. (C) Comparison of free-

core histones and mononucleosomes as substrates for the HMTase activity associated with the HP1a–CAF1 complex. We incubated the HP1 complex

with histones in the presence of 3H-SAM. Reaction products resolved by gel electrophoresis and revealed by autoradiography showed the presence of

methylated histones (H3me; top). Coomassie staining provides a loading control (bottom). (D) SetDB1 and HP1a Western blots, using 15 and 30 mg

of cytosolic, nuclear and chromatin extracts and two dilutions of the HP1a–CAF1 complex. ASF1, anti-silencing function 1 protein; CAF1, chromatin
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fact that the HMTase activity associated with the HP1a–CAF1
complex that we attribute to SETDB1 is specific for H3K9me1
might seem surprising given that other studies have shown
that SetDB1 can modify H3K9me2 to H3K9me3 in the presence
of the protein murine ATFa-associated modulator (mAM; Wang
et al, 2003). Interestingly, we were unable to detect H3K9me2
or H3K9me3 in our assays using the HP1a–CAF1–SetDB1
complex (Fig 2A). Given that mAM is not part of the HP1a–
CAF1–SetDB1complex (Fig 2D), SetDB1 activity might be
regulated by association with different co-factors; for example,
HP1a–CAF1 versus mAM.

SetDB1 localizes at HP1-enriched domains in S phase
To investigate whether SetDB1 associates with heterochromatin
during DNA replication, we performed immunofluorescence
analysis of SetDB1 in mouse 3T3 cells (Fig 3A). We carried out
dual staining for SetDB1 and proliferating cell nuclear antigen
(PCNA) as markers for replication foci. PCNA labelling allowed
us to distinguish non-S-phase cells from early, mid—when
pericentromeric regions replicate (Guenatri et al, 2004; Quivy
et al, 2004)—and late S-phase cells. We observed two cell popu-
lations: the first group showed diffuse SetDB1 nuclear staining that
did not coincide with pericentric heterochromatin (64%; Fig 3A);
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the second group showed SetDB1 staining at pericentric hetero-
chromatin (36%; Fig 3A). PCNA staining showed that 67% of cells
with diffuse SetDB1 staining were not in S phase and 21% were in
early S phase; thus, 88% of these cells were in a stage before the
replication of pericentric heterochromatin. By contrast, 71% of
cells with SetDB1 localized at pericentric heterochromatin were
in mid S phase, and therefore replicating pericentric hetero-
chromatin, and 15% were in late S phase. Thus, 86% of these cells
were at a stage after pericentric heterochromatin replication.
Taken together, these data indicate that SetDB1 localization at
pericentric heterochromatin correlates with the replication of
these sites. We would expect this localization if SetDB1 is
important in the inheritance of the heterochromatic H3K9
methylation patterns in a replication-dependent (CAF1/PCNA
driven) mechanism.

As SetDB1 localizes to pericentric heterochromatin domains
enriched in HP1, it seems plausible that it could be involved in the
methylation of H3K9 in these domains. Therefore, we evaluated
the impact of SetDB1 depletion on the levels of H3K9me1 in
chromosomal sites enriched with HP1a. We isolated HP1a-
enriched di- and trinucleosomes (Loyola et al, 2006) derived from

SetDB1-depleted cells to determine the extent of H3K9me1
present on this heterochromatin-derived material (Fig 3C). A
careful quantification of the data, by comparison with the
corresponding loading controls, Flag-HP1a and histone H3,
allowed us to estimate that there is a reduction of about 35% in
the amount of H3K9me1 levels at HP1-enriched nucleosomes in
the SetDB1-depleted cells compared with control cells (Fig 3C). It
should be pointed out that SetDB1 is depleted by only about 40%,
which explains the relatively modest reduction observed in the
H3K9me1 levels. Interestingly, the level of H3K9me3 (Fig 3C), but
not H3K9me2 (supplementary Fig S4C online), was also reduced
in these sites, further supporting the idea that H3K9me1 is the
substrate used to reach H3K9me3. These data show that SetDB1
associated with the HP1a–CAF1 complex contributes significantly
to the presence of H3K9me1 within oligonucleosomes associated
with HP1.

Establishment of the heterochromatic H3K9me3 pattern
During S phase, CAF1 can form a specific complex with
both SetDB1 and MBD1, leading to the hypothesis that
these associations link both H3K9 and DNA methylation with
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replication-coupled chromatin assembly in heterochromatic
regions (Sarraf & Stancheva, 2004). Remarkably, CAF1 can
exchange between a histone-containing complex, the H3.1
complex, and an HP complex, the HP1a complex. An attractive
hypothesis is that these two separate complexes function
sequentially to chaperone successive histones and HP1 at the
replication fork, either in the context of disruption or reassembly
of heterochromatin, through the synergistic action of the histone
chaperone Anti-silencing function 1 protein (ASF1; Groth et al,
2007b). First, by removing and/or accepting HP1 ahead of the
fork, one complex would allow the disruption of the parental
nucleosome. Second, the deposition of both recycled and new
HP1 would leave CAF1 available to deposit H3–H4 (recycled or
new). Interestingly, in this scheme, the recycled parental H3
would become available immediately for HP1 binding, whereas
the new histone would gain progressively mono- and then
trimethylation by the coordinated actions of the SetDB1 and
Suv39 HMTases. The connection between HMTases to guarantee
the reassembly of heterochromatin behind the fork would thus
ensure an iterative mechanism for histone deposition and/or
modification. Interestingly, the HP1a–CAF1 complex associates
with the H3K9 HMTase SetDB1, and a significant fraction of
SetDB1 accumulates in pericentric heterochromatin at the time
of its replication (Fig 3A,B). Furthermore, SetDB1 prefers free
histones rather than nucleosomes as substrates for methylation
in vitro (Fig 1C), which suggests that SetDB1 might modify
histones before their incorporation into chromatin. Consistently,
the level of non-nucleosomal H3K9me1 decreases when the
level of SetDB1 is reduced (supplementary Fig S4B online).
Therefore, during DNA replication, CAF1 might have a function
beyond deposition of the replicative histone H3.1 onto the
DNA, and might help to target SetDB1 and HP1a to sites of
heterochromatin formation, promoting both the monomethylation

of H3.1K9 and the loading of HP1a. Interestingly, we have
recently shown that the interaction between p150, the largest
subunit of CAF1, and HP1a is necessary for the replication of
pericentric heterochromatin, in a manner that is independent of
its histone H3.1 deposition activity (Quivy et al, 2008). Given the
known interaction between HP1a and Suv39H1 (Schotta et al,
2002; Stewart et al, 2005), we propose that, once methylated
by the HP1a–CAF1–SetDB1 complex, H3.1K9me1 subsequently
becomes trimethylated by Suv39H1/H2, as shown in Fig 4. We are
only just beginning to unravel the complex dynamics of the
interactions and choreography of events that help to propagate
particular histone post-translational modifications associated
with pericentric heterochromatin during replication. We antici-
pate that this model will prove useful in considering how other
modifications in other domains might be transmitted during
replication, an issue of fundamental interest in epigenetics.

METHODS
Complex purification. We grew Flag–HA-tagged HP1a- and
H3.1-expressing HeLa S3 cell lines as described previously (Quivy
et al, 2004; Tagami et al, 2004). We purified H3.1, HP1a–CAF1
and p150–CAF1 complexes from nuclear extracts by immuno-
precipitation using anti-Flag antibody conjugated agarose beads.
Histone methyltransferase assay. We performed the assays as
described by Eskeland et al (2004), using either 4 mg of
recombinant histones or nucleosomes, or 1 mg of histone H3
peptides containing the first 19 amino acids either unmodified or
trimethylated at K9.
MALDI-mass spectrometry. We acquired and analysed matrix-
assisted laser desorption/ionization (MALDI) spectra as described
previously (Bonaldi et al, 2004; Loyola et al, 2006).
Immunofluorescence. We performed immunofluorescence
after extraction with Triton-X100 to remove soluble proteins on
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Fig 4 | Iterative model for the maintenance of pericentric heterochromatin marking during DNA replication. During DNA replication, CAF1 deposits

H3.1 into newly replicated DNA and helps to target SetDB1 and HP1a to sites of heterochromatin formation, promoting both the monomethylation

of H3.1K9 and the loading of HP1a in these regions. We propose a model in which the HP1a–CAF1–SetDB1 complex has a dual role to (i) mono-

methylate H3.1K9 in a pre-deposition state and (ii) provide HP1 to bind to H3.1K9me3. For simplicity of the scheme, the histone chaperone of newly

synthesized histone H3.1 is not drawn. CAF1, chromatin assembly factor 1; HP1, heterochromatin protein 1; KAP1, KRAB-ZFP-associated protein 1.
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mouse 3T3 cells as described previously (Taddei et al, 2001;
Maison et al, 2002).
SetDB1 siRNA. The assay is shown in Fig 2C. In brief, we used
two distinct SetDB1 siRNAs, 50 nM of SetDB1 siRNA duplex
(SilencersPre-designed siRNA, Ambion, Austin, TX, USA; #1: ID:
138242, sequence 50-30: GGGCAGUGACUAAUUGUGAtt, #2:
ID 3897, sequence 50-30: GGGUGUUUUCAUUAACACAtt), to
ensure that our observations were not due to off-target effects. As
a negative control, we used 50 nM of negative control siRNA
(SilencersNegative Control #1 siRNA, Ambion), a sequence
designed without any significant sequence similarity with mouse,
rat or human transcripts sequences. Two rounds of transfections
were necessary to effectively knock down SetDB1 present in both
the soluble fraction and in the HP1a–CAF1 complex.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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