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Abstract
Posttranslational modification (PTM) of proteins is critical to modulate protein function and to improve the functional diver-
sity of polypeptides. In this report, we have analyzed the PTM of both hepatitis C virus NS3 and NS5B enzyme proteins, 
upon their individual expression in insect cells under the baculovirus expression system. Using mass spectrometry, we 
present evidence that these recombinant proteins exhibit diverse covalent modifications on certain amino acid side chains, 
such as phosphorylation, ubiquitination, and acetylation. Although the functional implications of these PTM must be further 
addressed, these data may prove useful toward the understanding of the complex regulation of these key viral enzymes and 
to uncover novel potential targets for antiviral design.
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The hepatitis C virus (HCV) contains a genome of single-
stranded, positive-polarity RNA. The expression of its 
RNA in the endoplasmic reticulum produces a precursor, 
which is proteolytically cleaved into mature viral proteins, 
comprising structural, and nonstructural (NS) polypeptides 
[1]. Whereas structural proteins will package into particles 
for viral progeny, NS proteins will direct the assembly of 

a multi-subunit RNA replication complex on intracellular 
membranes [2–4]. Amongst the viral NS proteins, two criti-
cal enzymatic activities for the viral cycle, NS3, and NS5B 
have been targets of intense research efforts to design new 
anti-viral compounds.

HCV NS3 is a multifunctional protein composed of two 
domains: a chymotrypsin-like serine-protease activity, resid-
ing in its N-terminal third, and an NTPase/helicase activ-
ity, located in its two C-terminal thirds (Fig. 1, left) [5]. 
Both enzymatic activities are modulated by interdomain 
interactions and by the NS3-cofactor, NS4A, whose N-ter-
minal hydrophobic helix provides a membrane anchor for 
the NS3–NS4A complex [6, 7]. The NS3–NS4A complex 
catalyzes cleavages on the HCV polyprotein precursor to 
generate viral NS proteins. The helicase activity of NS3 is 
essential for HCV RNA replication in replicons and produc-
tive infection in chimpanzees [8–10].

HCV NS5B is the viral RdRP. Analysis of the NS5B 
amino acid sequence has indicated the existence of five con-
served motifs [11, 12]. The crystal structure of NS5B uncov-
ers a catalytic domain, continued by a C-terminal region 
connecting to the transmembrane domain through the active-
site groove [13, 14]. The catalytic domain folds into the 
classical right-hand structure, with “fingers”, “palm”, and 
“thumb” subdomains (Fig. 1, right) [15]. After the expres-
sion of NS5B, this protein is detected in association with 
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ER membranes, being directed to membranes by an anchor 
peptide located at its C-terminal end [15, 16].

Posttranslational modification (PTM) can regulate a viral 
protein’s subcellular localization, stability, biochemical and/
or enzymatic activity, protein/nucleic acid interactions, and 
interactions with other cellular and viral partners, thereby 
improving protein functional diversity. Amongst the HCV 
proteins, several mature polypeptides have been shown to be 
posttranslationally modified. The trans-suppression activ-
ity of the Core protein has been shown to be modulated by 

phosphorylation [17], and the transmembrane NS2 protease 
protein is also phosphorylated, which is involved in its turno-
ver [18, 19]. The NS3 protease and helicase viral protein 
have been shown to be N-terminal acetylated, methylated, 
and phosphorylated, and all these modifications are thought 
to somehow regulate their functions [20, 21]. The transmem-
brane NS4B membranous web protein has been shown to 
be palmitoylated; this lipid modification facilitates the self-
association of the protein [22]. In cells where HCV RNA 
replication is ongoing, two phosphorylated forms of NS5A 
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Fig. 1  Recombinant HCV NS3 and NS5B proteins. a Left: domain 
organization of NS3 protease and NTPase/helicase. The one-third 
N-terminal domain, exhibiting protease activity, and the two-thirds 
C-terminal domains, displaying NTPase/helicase activity are shown. 
As indicated, the NTPase/helicase domain is further functionally dis-
sected into three domains, named Domains 1–3 [5–7]. Right: domain 
organization of NS5B RdRP. The HCV RNA polymerase is organ-
ized into fingers, palm, and thumb domains, as shown. Interconnect-
ing loops, interconnecting region, and the β-loop are indicated on 
top of the diagram [12–14]. b Left: recombinant HCV NS3 protein. 
A fraction of partially purified protein was stained with Coomassie 
stain (lane 1). Western blots where anti-His6, in lane 2, and anti-NS3 
specific antibodies, in lane 3, respectively, were used to identify the 
recombinant HCV NS3 protein. Right: recombinant HCV NS5B 
protein. A fraction of partially purified protein was stained with 

Coomassie stain (lane 2). Western blots, where anti-NS5B (lane 3), 
and anti-His6-specific antibodies (lane 4), were used to identify the 
recombinant HCV NS5B protein. c Left: amino acid sequence of 
the recombinant HCV NS3 protein (JFH1 virus, HCV genotype 2a, 
AB237837.1), and protein coverage with trypsin digestion. The first 
22 residues are contributed by the vector, introducing a  His6-tag uti-
lized for purification, followed by the full amino acid sequence of 
NS3. Sequence coverage is 74%, which is indicated by the underlined 
amino acids. Right: amino acid sequence of the recombinant HCV 
NS5B protein (JFH1 virus, HCV genotype 2a, AB237837.1), and 
protein coverage with trypsin digestion. The first 22 residues are con-
tributed by the vector, introducing a  His6-tag utilized for purification, 
followed by the full amino acid sequence of NS5B. Sequence cover-
age is 81%, which is indicated by the underlined residues
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have been identified, the ratio of which correlates with the 
level of HCV RNA replication [23, 24]. Finally, it is known 
that the viral RNA polymerase NS5B is a phosphoprotein 
[25], and the protein involved in the phosphorylation of 
several residues has been identified as the cellular protein 
kinase C-related kinase 2 (PRK2) [26, 27]. However, other 
phosphorylation sites have been also functionally identi-
fied and characterized [28]. Since HCV NS3 and NS5B are 
multifunctional enzyme proteins, and both likely subjected 
to regulation mechanisms, we investigated the profile of 
PTM of these proteins upon their individual expression in 

eukaryotic Sf9 insect cells infected with their recombinant 
baculoviruses.

HCV recombinant NS3 and NS5B proteins were partially 
purified from infected Sf9 cell extracts using Ni–NTA beads, 
and imidazole elution procedures. Partially purified proteins 
were probed with specific antibodies, as shown for both NS3 
and NS5B in Fig. 1b (left and right, respectively). Coomasie 
stained protein bands were then excised from gels. Isolated 
protein bands were digested with trypsin and subjected to 
high-resolution tandem mass spectrometry analyses (MS/
MS) to identify PTM utilizing an AB Sciex 5600 Triple Tof 
mass spectrometer in the Targeted Metabolomics and Pro-
teomics Laboratory (TMPL) at the University of Alabama 
at Birmingham.

Posttranslational modifications found in the HCV NS3 are 
shown in Table 1. In its protease domain, sites of deamida-
tion (N110) and phosphorylation (S128) were identified. For 
Ser128 phosphorylation spectra, the trypsin digested peptide 
was identified with a precursor charged at 716.8998 m/z. 
On the other hand, in the helicase domain 2, a site of ubiq-
uitination (C374) was found, whereas in domain 3, sites of 
ubiquitination and allysine (K589) and deamidation (N607) 
were confirmed (Supplementary Material, Figure S1).

Posttranslational modifications identified in the HCV 
NS5B protein are listed based on its domain organiza-
tion. Table 2 top shows PTMs found in the fingers domain, 
where sites of phosphorylation (S27, and S29), dimethyla-
tion (N28), ubiquitination (C89, and K151), and nitration 

Table 1  PTMs identified in recombinant HCV NS3 protein

a Amino acid residue number of HCV NS3, according to the indicated 
in Fig. 1
b PTM identified by LC–MS/MS
c Trypsin-digested peptide where modified residue is shown under-
lined

Amino  acida Modificationb Modified  peptidec

N110 Deamidation N(Deamidated)ADVIPAR
S128 Phosphorylation GALLS(Phospho)PRPISTLK
C374 Ubiquitination C(Ubiquitin)DELAAALR
K589 Ubiquitination LK(Ubiquitin)PTLAGPTPLLYR
K589 Allysine LK(Allysine)PTLAGPTPLLYR
N607 Deamidation LGPITN(Deamidated)EVTLTH

PGTK

Table 2  PTMs identified in 
recombinant HCV NS5b protein

a Amino acid residue number of HCV NS5B, according to the indicated in Fig. 1
b PTM identified by LC–MS/MS
c Trypsin-digested peptide where modified residue is shown underlined

Amino  acida Modificationb Modified  peptidec

Fingers
 S27 Phosphorylation LPINPLS(Phospho)NSLLR
 N28 Dimethylation LPINPLSN(Dimethyl)SLLR
 S29 Phosphorylation LPINPLSNS(Phospho)LLR
 C89 Ubiquitination LLTLEEAC(GlyGly)QLTPPHSAR
 K151 Ubiquitination NEVFC(Propionamide)VDPAK(GlyGly)GGK
 Y162 Nitration LIVY(Nitro)PDLGVR

Palm
 S190 Acetylation LPQAVM(Oxidized)GAS(Acetyl)YGFQYSPAQR
 S190 Decanoylation PQAVM(oxidized)GAS(Decanoyl)YGFQYSPAQR
 K206 Ubiquitination VEYLLK(GlyGly)AWAEK
 C243 Ubiquitination TEESIYQAC(GlyGly)SLPEEAR

Thumb
 T390 Phosphorylation DPTT(Phospho)PLAR
 S473 Decanoylation HGLDAFS(Decanoyl)M(oxidized)HTYSHHELTR
 Y524 Nitration Y(Nitro)LFNWAVK
 K531 Ubiquitination YLFNWAVK(GlyGly)TK
 K535 Ubiquitination LK(GlyGly)LTPLPEAR
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(Y162) were identified (Supplementary Material, Figure 
S2). Table 2 middle lists PTMs found in the palm domain, 
where sites of acetylation (S190), decanoylation (S190), and 
ubiquitination (K206 and C243) were found (Supplemen-
tary Material, Figure S3). Finally, Table 2 bottom shows the 
PTMs found in the thumb domain, where sites of phospho-
rylation (T390), decanoylation (S473), nitration (Y524), and 
ubiquitination (K531, and K535) were found (Supplemen-
tary Material, Figure S4). For the identification of Ser27, 
Ser29, and Thr390, the indicated peptides were identified 
in the spectra with precursors charged at 708.8860 m/z, 
708.8821 m/z, and 475.7215 m/z, respectively.

Reversible phosphorylation is the best studied PTM that 
regulates the biological role of proteins [29]. HCV NS3 has 
been preliminarily reported as N-terminal acetylated, meth-
ylated, and phosphorylated [20, 21]. Herein, we have identi-
fied that HCV NS3 S128 is phosphorylated. This residue is 
located within the protease domain, and since the protease 
and helicase domains are regulated by interdomain interac-
tions, and NS4A, it is possible that S128 phosphorylation 
may also be involved in the regulation of both enzymatic 
activities [30]. Additionally, phosphorylated S128 might 
have a role in functionally regulating interactions with NS2 
protease [31]. For HCV NS5B, it has been proposed that 
the cellular kinase PRK2 can modulate the polymerase by 
phosphorylation on serine residues at the N-terminus, in the 
fingers subdomain, in vivo [27, 28]. Consistently, we have 
found that HCV NS5B S27 and S29 residues within the fin-
gers subdomain are also phosphorylated. However, we have 
also discovered that T390, located at the thumb subdomain, 
is phosphorylated as well, thereby expanding the complex-
ity of the regulation of the HCV RdRP by phosphorylation.

Ubiquitin is a small regulatory polypeptide, and its conju-
gation onto proteins often directs the labeled protein to deg-
radation in the proteasome [32]. However, there are several 
non-proteolytic functions associated with the mono-ubiquit-
ination of proteins. It has been shown that this is a reversible, 
non-proteolytic protein mark that can be involved in pro-
cesses as diverse as the modulation of histones, DNA repair, 
protein trafficking, endocytosis, and virus exit [33–37]. 
Herein, we have shown that both recombinant HCV NS3 
and NS5B proteins become ubiquitinated. For both HCV 
proteins, it is possible that several of these sites might have 
a role as sites for degradation targeting. However, it is also 
possible that some of them can perform regulatory functions 
on their enzymatic activities or on modulating protein–pro-
tein interactions. Interestingly, HCV NS5B K151, which we 
have found here to be ubiquitinated, has been identified as 
critical for genome replication and infectious virus produc-
tion [38].

Similar to histones, cytoplasmic proteins have been also 
reported to be acetylated, and acetylation seems to play a 
role in cell biology, not only for transcriptional regulation 

[39]. Furthermore, cross talk between acetylation, and other 
PTM, including phosphorylation, ubiquitination, and meth-
ylation, can modify the function of the acetylated protein 
[39–41]. For recombinant HCV NS5B, we found that residue 
S190 is acetylated, however, whether this particular acety-
lation can functionally interplay with other modifications 
remains to be determined.

Deamidation is a PTM resulting in the conversion of an 
asparagine residue to a mixture of isoaspartate and aspar-
tate. Deamidation of glutamine residues can also occur, but 
does so at a much lower rate [42]. In the current analysis, 
we found that recombinant HCV NS3 is deamidated at two 
different asparagine sites, and it has been postulated that 
deamidation may provide a signal for protein degradation, 
thereby regulating intracellular levels and protein turnover. 
The role of protein deamidation during HCV replication 
remains to be determined.

Protein fatty acid acylation is the PTM of proteins via 
the attachment of functional groups through acyl linkages. 
One important kind is fatty acylation, where two modifica-
tions are well known. In myristoylation, a myristoyl group 
(derived from myristic acid,  CH3(CH2)12COOH) is cova-
lently attached to an N-terminal residue of a nascent pro-
tein, commonly on glycine residues [43]. Palmitoylation is 
the covalent attachment of palmitoyl group (derived from 
palmitic acid,  CH3(CH2)14COOH) to cysteine, and less 
frequently to serine and threonine residues of proteins [43, 
44]. In both cases, these PTMs display significant roles in 
targeting proteins to membranes. In the current analyses, 
we have found that recombinant HCV NS5B exhibited two 
serine residues (S190 and S473) that were modified by 
decanoylation, probably derived from decanoic or capric 
acid  (CH3(CH2)8COOH). A similar kind of acylation has 
been previously well documented [45–48]. Since HCV 
NS5B is known to be targeted to membranes through its 
C-terminal hydrophobic region, the role and relevance of 
this new modification for the association of the protein with 
membranes needs to be experimentally addressed. However, 
this finding might be noteworthy, since it has been shown 
that HCV replication is regulated by fatty acids [49].

Both, limitations and advantages of protein PTM found in 
baculovirus expression systems have been recently reviewed 
[50–52]. Regarding to this, a whole field of research to pro-
duce human vaccines in baculovirus expression system is 
currently in full development, which validates and guaran-
tees the utilization of such an expression system.
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